Communication avoiding algorithms in linear algebra

Laura Grigori
ALPINES
INRIA Rocquencourt - LJLL, UPMC
France

Plan

• Motivation
• Selected past work on reducing communication
• Communication complexity of linear algebra operations
• Communication avoiding for dense linear algebra
 • LU, QR, Rank Revealing QR factorizations
 • Often not in ScalAPACK or LAPACK (YET !)
 • Algorithms for multicore processors
• Communication avoiding for sparse linear algebra
 • Iterative methods and preconditioning
• Conclusions

The role of numerical linear algebra

• Challenging applications often rely on solving linear algebra problems
• Linear systems of equations
 Solve $Ax = b$, where $A \in \mathbb{R}^{n \times n}$, $b \in \mathbb{R}^n$, $x \in \mathbb{R}^n$
 • Direct methods
 $PA = LU$, then solve $P^T L U x = b$
 Backward stability of LU factorization depends on g_W:
 \[\|L \|_\infty \leq (1 + 2(n^2 - n)g_W) \|A\|_\infty, \]
 where $g_W = \max_{i,j,k} |a_{ij}^k| / \|a_{ij}\|_\infty$
 • Iterative methods
 • Find a solution x_k from $x_0 + K_k (A, r_o)$, where $K_k (A, r_o) = \text{span} \{ r_o, A r_o, ..., A^{k-1} r_o \}$ such that the Petrov-Galerkin condition $b - A x_k \perp L_k$ is satisfied, where L_k is a subspace of dimension k and $r_o = A x_0 - b$.
 • Convergence depends on $\kappa(A)$ and the eigenvalue distribution (for SPD matrices).

Data driven science

Numerical simulations require increasingly computing power as data sets grow exponentially

Figures from astrophysics:
• Produce and analyze multi-frequency 2D images of the universe when it was 5% of its current age.
• COBE (1989) collected 10 gigabytes of data, required 1 Teraflop per image analysis.
• PLANCK (2010) produced 1 terabyte of data, requires 100 Petaflops per image analysis.
• Future experiment (2020) estimated to collect .5 petabytes, require 100 Exaflops per image analysis.
 Source: J. Borrill, LBNL, R. Stompor, Paris 7
Least Square (LS) Problems

- Given $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, solve $\min_{x} \|Ax - b\|_2$.
- Any solution of the LS problem satisfies the normal equations: $A^T A x = A^T b$.
- Given the QR factorization of A

 $A = QR$

 where R is $n \times n$ upper triangular matrix

 Q is $m \times m$ orthogonal matrix

 if $\text{rank}(A) = \text{rank}(R) = n$, then the LS solution is given by $x = (Q^T b)[:, 1:n]$.
- The QR factorization is column-wise backward stable

 \[
 \left\| A - \hat{Q}\hat{R} \right\|_F \leq \sqrt{n} \sigma_n \left(A \right) \left\| A(:, j) \right\|_2
 \]

 where $0 \leq j \leq n$.

Motivation - the communication wall

- Runtime of an algorithm is the sum of:
 - $\#\text{flops} \times \text{time per flop}$
 - $\#\text{words moved} / \text{bandwidth}$
 - $\#\text{messages} \times \text{latency}$
- Time to move data $>>$ time per flop
 - Gap steadily and exponentially growing over time

<table>
<thead>
<tr>
<th>Annual improvements</th>
<th>Bandwidth</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time/flop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>26%</td>
<td>15%</td>
</tr>
<tr>
<td>DRAM</td>
<td>23%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- Performance of an application is less than 10% of the peak performance

 “We are going to hit the memory wall, unless something basic changes”

 [W. Wulf, S. McKee, 95]

Rank revealing factorizations

- A rank revealing QR (RRQR) factorization is given as

 $A \Pi = QR \left(\begin{array}{cc} R_{11} & R_{12} \\ R_{21} & R_{22} \end{array} \right)$, R_{11} is $k \times p(k,n)$

 with $\sigma_{\text{min}}(R_{11}) \geq \frac{\sigma_n(A)}{p(k,n)}$, $\sigma_{\text{min}}(R_{22}) \leq \sigma_{\text{min}}(A)$ $p(k,n)$

 $p(k,n)$ is a low degree polynomial in n and k, R_{11} is well conditioned, $\left\| R_{22} \right\|_2$ is small.

- Since $\sigma_{\text{min}}(A) \leq \sigma_{\text{min}}(R_{22}) = \left\| R_{22} \right\|_2$, the numerical rank of A is k.

- $Q(:,1:k)$ forms an approximate orthogonal basis for the range of A.

- R_{22} forms approximate null vectors.

- Applications: subset selection and linear dependency analysis, rank determination, low rank approximation - solve $\min_{\text{rank}(X) = k} \| A - X \|_2$.

- The communication problem needs to be taken into account higher in the computing stack

- A paradigm shift in the way the numerical algorithms are devised is required

- Communication avoiding algorithms - a novel perspective for numerical linear algebra
 - Minimize volume of communication
 - Minimize number of messages
 - Minimize over multiple levels of memory/parallelism
 - Allow redundant computations (preferably as a low order term)
Previous work on reducing communication

• **Tuning**
 - Overlap communication and computation, at most a factor of 2 speedup

• **Ghosting**
 - Store redundantly data from neighboring processors for future computations

• **Scheduling**
 - Block algorithms for linear algebra
 - Barron and Swinnerton-Dyer, 1960
 - ScaLAPACK, Blackford et al 97
 - Cache oblivious algorithms for linear algebra
 - Gustavson 97, Toledo 97, Frens and Wise 03, Ahmed and Pingali 00

Communication Complexity of Dense Linear Algebra

• Matrix multiply, using $2n^3$ flops (sequential or parallel)
 - Lower bound on Bandwidth = $\Omega \left(\frac{\#\text{flops}}{M^{1/2}} \right)$
 - Lower bound on Latency = $\Omega \left(\frac{\#\text{flops}}{M^{3/2}} \right)$

• Same lower bounds apply to LU using reduction
 - Demmel, LG, Hoemmen, Langou 2008

$$
\begin{pmatrix}
 I & -B \\
 A & I \\
 I & I
\end{pmatrix} =
\begin{pmatrix}
 I & -B \\
 A & I \\
 I & I
\end{pmatrix}
\begin{pmatrix}
 I & I \\
 A & I \\
 I & I
\end{pmatrix}
$$

• And to almost all direct linear algebra [Ballard, Demmel, Holtz, Schwartz, 09]

Communication in CMB data analysis

• **Map-making problem**
 - Find the best map x from observations d, scanning strategy A, and noise N^{-1}
 - Solve generalized least squares problem involving sparse matrices of size 10^{12}-by-10^{7}

• **Spherical harmonic transform (SHT)**
 - Synthesize a sky image from its harmonic representation
 - Computation over rows of a 2D object (summation of spherical harmonics)
 - Communication to transpose the 2D object
 - Computation over columns of the 2D object (FFTs)

2D Parallel algorithms and communication bounds

• If memory per processor = n^2 / P, the lower bounds become
 \[
 \#\text{words}_\text{moved} \geq \Omega \left(\frac{n^2}{P^{1/2}} \right), \quad \#\text{messages} \geq \Omega \left(\frac{P}{P^{1/2}} \right)
 \]

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Minimizing #words (not #messages)</th>
<th>Minimizing #words and #messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesky</td>
<td>ScaLAPACK</td>
<td>ScaLAPACK</td>
</tr>
<tr>
<td>LU</td>
<td>ScaLAPACK</td>
<td>[LG, Demmel, Xiang, 08]</td>
</tr>
<tr>
<td></td>
<td>uses partial pivoting</td>
<td>[Khabou, Demmel, LG, Gu, 12]</td>
</tr>
<tr>
<td>QR</td>
<td>ScaLAPACK</td>
<td>[Demmel, LG, Hoemmen, Langou, 08]</td>
</tr>
<tr>
<td>RRQR</td>
<td>ScaLAPACK</td>
<td>[Demmel, LG, Gu, Xiang 13]</td>
</tr>
</tbody>
</table>

• Only several references shown, block algorithms (ScaLAPACK) and communication avoiding algorithms

Page 9

Page 11
LU factorization (as in ScaLAPACK pdgetrf)

LU factorization on a P = P_r x P_c grid of processors

For ib = 1 to n-1 step b

\[A^{(ib)}_n = A_{ib:n, ib:n} \]

1. Compute panel factorization
 - find pivot in each column, swap rows
2. Apply all row permutations
 - broadcast pivot information along the rows
 - swap rows at left and right
3. Compute block row of U
 - broadcast right diagonal block of L of current panel
4. Update trailing matrix
 - broadcast right block column of L
 - broadcast down block row of U

#messages

\[O(n \log_2 P_r) \]

\[O(n/b(\log_2 P_c + \log_2 P_r)) \]

\[O(n/b \log_2 P_c) \]

\[O(n/b(\log_2 P_c + \log_2 P_r)) \]

TSQR: QR factorization of a tall skinny matrix using Householder transformations

- QR decomposition of m x b matrix W, m >> b
- P processors, block row layout

Classic Parallel Algorithm
- Compute Householder vector for each column
- Number of messages \(\propto b \log P \)

Communication Avoiding Algorithm
- Reduction operation, with QR as operator
- Number of messages \(\propto \log P \)

\[W = \begin{bmatrix} W_0 & W_1 & W_2 & W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} & R_{10} & R_{20} & R_{30} \end{bmatrix} \]

\[\rightarrow \begin{bmatrix} R_{01} & R_{02} \end{bmatrix} \]

Dual Core: W = \[
\begin{bmatrix} W_0 & W_1 & W_2 & W_3 \end{bmatrix} \]

Reduction tree will depend on the underlying architecture, could be chosen dynamically

Page 13

Flexibility of TSQR and CAQR algorithms

Parallel: \[W = \begin{bmatrix} W_0 & W_1 & W_2 & W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} & R_{10} & R_{20} & R_{30} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} & R_{11} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \end{bmatrix} \]

Sequential: \[W = \begin{bmatrix} W_0 & W_1 & W_2 & W_3 \end{bmatrix} \rightarrow \begin{bmatrix} R_{00} & R_{10} & R_{20} & R_{30} \end{bmatrix} \rightarrow \begin{bmatrix} R_{01} & R_{11} \end{bmatrix} \rightarrow \begin{bmatrix} R_{02} \end{bmatrix} \]

Modeled Speedups of CAQR vs ScaLAPACK

Petascale up to 22.9x
IBM Power 5 up to 9.7x
“Grid” up to 11x

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.

\[\gamma = 2 \cdot 10^{-5} s, \alpha = 10^{-5} s, \beta = 2 \cdot 10^{-5} s/word. \]
Obvious generalization of TSQR to LU

• Block parallel pivoting:
 • uses a binary tree and is optimal in the parallel case
 \[
 W = \begin{bmatrix}
 W_0 & U_{00} & U_{01} & U_{02} \\
 W_1 & U_{10} & & \\
 W_2 & U_{20} & U_{11} & \\
 W_3 & & & \\
 \end{bmatrix}
 \]

• Block pairwise pivoting:
 • uses a flat tree and is optimal in the sequential case
 • introduced by Barron and Swinnerton-Dyer, 1960: block LU factorization used to solve a system with 100 equations on EDSAC 2 computer using an auxiliary magnetic-tape
 • used in PLASMA for multicore architectures and FLAME for out-of-core algorithms and for multicore architectures

Page 17

Stability of the LU factorization

• The backward stability of the LU factorization of a matrix \(A \) of size \(n \)-by-\(n \)
 \[
 \|L\| \|U\| \leq (1 + 2(n^2 - n)g_{max}) \|A\|
 \]
 depends on the growth factor
 \[
 g_w = \max_{i,j,k} \left| a_{ij}^k \right| \quad \text{where} \quad a_{ij}^k \text{are the values at the k-th step.}
 \]

• \(g_w \leq 2^{n-1} \), but in practice it is on the order of \(n^{2/3} \) -- \(n^{1/2} \)

• Two reasons considered to be important for the average case stability [Trefethen and Schreiber, 90] :
 - the multipliers in \(L \) are small,
 - the correction introduced at each elimination step is of rank 1.

Page 18

Block parallel pivoting

• Results shown for random matrices
• Will become unstable for large matrices

\[
W = \begin{bmatrix}
W_0 & U_{00} & U_{01} & U_{02} \\
W_1 & U_{10} & & \\
W_2 & U_{20} & U_{11} & \\
W_3 & & & \\
\end{bmatrix}
\]

Page 19

Block pairwise pivoting

• Unstable for large number of processors \(P \)
• When \(P=\text{number rows} \), it corresponds to parallel pivoting, known to be unstable (Trefethen and Schreiber, 90)

Page 20
Tournament pivoting - the overall idea

- At each iteration of a block algorithm
 \[A = \begin{pmatrix} A_{11} & A_{21} \\ A_{21} & A_{22} \end{pmatrix} \]
 where \(W = \begin{pmatrix} A_{11} \end{pmatrix} \)

- Preprocess \(W \) to find at low communication cost good pivots for the LU factorization of \(W \), return a permutation matrix \(P \).
- Permute the pivots to top, ie compute \(PA \).
- Compute LU with no pivoting of \(W \), update trailing matrix.

\[PA = \begin{pmatrix} L_{11} & U_{11} \\ L_{21} & I_{n-b} \end{pmatrix} \begin{pmatrix} U_{12} & \end{pmatrix} = A_{22} - L_{21}U_{12} \]

Growth factor for binary tree based CALU

- Random matrices from a normal distribution
- Same behaviour for all matrices in our test, and \(|L| \leq 4.2 \)

Stability of CALU (experimental results)

- Results show \(||PA-LU||/||A|| \), normwise and componentwise backward errors, for random matrices and special ones
 - See [LG, Demmel, Xiang, SIMAX 2011] for details
 - BCALU denotes binary tree based CALU and FCALU denotes flat tree based CALU
Our “proof of stability” for CALU

- CALU as stable as GEPP in following sense: In exact arithmetic, CALU process on a matrix A is equivalent to GEPP process on a larger matrix G whose entries are blocks of A and zeros.

- Example of one step of tournament pivoting:

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{pmatrix}
\]

\[
G = \begin{pmatrix}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{A}_{21} & \tilde{A}_{22} \\
-\tilde{A}_{31} & \tilde{A}_{32}
\end{pmatrix}
\]

- Proof possible by using original rows of A during tournament pivoting (not the computed rows of U).

LU factorization and low rank matrices

- For low rank matrices, the factorization of A₁ can be computed as following might not be stable:

 Compute PA=LU by using GEPP
 L(k+1:end,k) = A(k+1:end,k)/A(k,k)
 Permute the matrix A
 Compute LU with no pivoting A₁=L₁U₁
 L(k+1:end,k) = L(k+1:end,k)* (1/A(k,k))

- Example A = randn(6,3)*randn(3,5), max(abs(L₁)) = 1, max(abs(L₁))₁⁻¹ = 10⁻¹⁵

After 4 steps of factorization of PA we obtain:

\[
P4₁ = \begin{pmatrix}
1.0000 & 0.1729 & 0.0661 & 0.5776 & 0.4789 & -0.3264 & 0.0000 & 0.8068 & 0.0543 & -0.7514 & 0.0000 & -0.3264 & 1.0000 & 2.3333 & 1.0000 & 0.0000 & 0.1545 & 2.3300 & 1.7778
\end{pmatrix}
\]

\[
P₄₁^{-1} = \begin{pmatrix}
-4.4766 & 3.0163 & -4.7290 & 4.2180 & -0.8164 & -1.5439 & -0.4703 & 1.9267 & 1.0925 & 1.6149 & 2.3623 & 0.3167 & 9.9e-16 & 1.6e-16 & 1 & 3.3e-16 & 8.3e-17
\end{pmatrix}
\]

Schur complement after 4 elimination steps:

\[
A₄₁^{-1} = \begin{pmatrix}
1.0000 & 0.1729 & 0.0661 & 0.5776 & 0.4789 & -0.3264 & 0.0000 & 0.8068 & 0.0543 & -0.7514 & 0.0000 & -0.3264 & 1.0000 & 2.3333 & 1.0000 & 0.0000 & 0.1545 & 2.3300 & 1.7778
\end{pmatrix}
\]

After 4 steps of factorization of A we obtain:

\[
A₄₁ = \begin{pmatrix}
-4.4766 & 3.0163 & -4.7290 & 4.2180 & -0.8164 & -1.5439 & -0.4703 & 1.9267 & 1.0925 & 1.6149 & 2.3623 & 0.3167 & 9.9e-16 & 1.6e-16 & 1 & 3.3e-16 & 8.3e-17
\end{pmatrix}
\]

\[
P₄₄₁ = \begin{pmatrix}
1.0000 & 0.1729 & 0.0661 & 0.5776 & 0.4789 & -0.3264 & 0.0000 & 0.8068 & 0.0543 & -0.7514 & 0.0000 & -0.3264 & 1.0000 & 2.3333 & 1.0000 & 0.0000 & 0.1545 & 2.3300 & 1.7778
\end{pmatrix}
\]

\[
P₄₄₁^{-1} = \begin{pmatrix}
-4.4766 & 3.0163 & -4.7290 & 4.2180 & -0.8164 & -1.5439 & -0.4703 & 1.9267 & 1.0925 & 1.6149 & 2.3623 & 0.3167 & 9.9e-16 & 1.6e-16 & 1 & 3.3e-16 & 8.3e-17
\end{pmatrix}
\]

Bound for F

\[
2^n \text{ for } O((m + \log n)n^2) \text{ extra flops}
\]

- f is a small constant
- b is the block size of the block RRQR

Growth factor in exact arithmetic

- Matrix of size m-by-n, reduction tree of height H=log(P).
- (CA)LU_PRRP select pivots using strong rank revealing QR (A. Khabou, J. Demmel, LG, M. Gu, SIMAX 2013)
- “In practice” means observed/expected/conjectured values.

Comparison of Growth Factors

<table>
<thead>
<tr>
<th>DAU - PRRP</th>
<th>GEPP</th>
<th>CALU</th>
<th>CALU_PRRP</th>
<th>LU_PRRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper bound</td>
<td>$2^{n(\log(P)+1)-1}$</td>
<td>2^{n-1}</td>
<td>$(1+2b)^{(n/b)\log(P)}$</td>
<td>$(1+2b)^{(n/b)}$</td>
</tr>
<tr>
<td>In practice</td>
<td>$n^{2/3} - n^{1/2}$</td>
<td>$n^{3/2} - n^{1/2}$</td>
<td>$(n/b)^{2/3} - (n/b)^{1/2}$</td>
<td>$(n/b)^{2/3} - (n/b)^{1/2}$</td>
</tr>
</tbody>
</table>

Better bounds

- For a matrix of size 10^7-by-10^7 (using petabytes of memory) $n^{1/2} = 10^{3.5}$
- When will Linpack have to use the QR factorization for solving linear systems?

Rank revealing QR factorization (RRQR)

- A RRQR factorization $A\Pi = QR = \begin{pmatrix} R_{i1} & R_{i2} \\ R_{j1} & R_{j2} \end{pmatrix}$ R_{i1} is $k \times k$

satisfies

$$1 \leq \frac{\sigma_i(A)}{\sigma_i(R_{i1})}, \quad \frac{\sigma_j(R_{j2})}{\sigma_j(A)} \leq 1 + F^2(n-k),$$

for any $1 \leq i \leq k$ and $1 \leq j \leq \min(m,n) - k$

Better Bounds

<table>
<thead>
<tr>
<th>QR with Column Pivoting</th>
<th>Strong RRQR (Gu, Eisenstat)</th>
<th>CA-RRQR Tournament pivoting</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^n</td>
<td>f</td>
<td>$\sim (b+n)^{1/2}$ $(fb)^{(n/b)\log(n/b)}$</td>
</tr>
</tbody>
</table>
Communication avoiding RRQR

- Tournament pivoting used during panel factorization to select b columns.

- One step of CA-RRQR, $A=(A_0, A_1)$.

- Perform (strong) RRQR on each column block.
 \[A_0 \Pi_{00} = Q_{00} R_{00} \] pick first b columns, form A_{00}
 \[A_1 \Pi_{10} = Q_{10} R_{10} \] same for A_{10}

- Perform (strong) RRQR on (A_{00}, A_{10}).
 \[(A_{00}, A_{10}) \Pi_{10} = Q_{10} R_{10} \] pick b columns, form A_{01}

- Permute A_{01} in front, compute QR with no pivoting

Demmel, LG, Gu, Xiang 2013.

CA-RRQR experimental results

- Performed in the context of QLP decomposition (Stewart)
 \[A \Pi = ca - rrqr(Q, R) \]
 \[R^T \Pi L = cagqr(P, L^T) \]

- Devil’s stairs matrix (P. Stewart) with multiple gaps in the singular values
- Singular values computed using DGESVJ (Z. Drmac and K. Veselic, 08)

Performance vs ScaLAPACK

- Parallel TSLU (LU on tall-skinny matrix)
 - IBM Power 5
 - Up to 4.37x faster (16 procs, 1M x 150)
 - Cray XT4
 - Up to 5.52x faster (8 procs, 1M x 150)

- Parallel CALU (LU on general matrices)
 - Intel Xeon (two socket, quad core)
 - Up to 2.33x faster (8 cores, 10^6 x 500)
 - IBM Power 5
 - Up to 2.29x faster (64 procs, 1000 x 1000)
 - Cray XT4
 - Up to 1.81x faster (64 procs, 1000 x 1000)

- Details in SC08 (LG, Demmel, Xiang), IPDPS’10 (S. Donfack, LG).

Lightweight scheduling for CALU

- Static scheduling
- Static + 10% dynamic scheduling
- 100% dynamic scheduling

Donfack, LG, Gropp, Kale, IPDPS 2012
Plan

- Motivation
- Selected past work on reducing communication
- Communication complexity of linear algebra operations
- Communication avoiding for dense linear algebra
 - LU, LU_PRRP, OR, Rank Revealing QR factorizations
 - Often not in ScalAPACK or LAPACK
 - Algorithms for multicore processors
- Communication avoiding for sparse linear algebra
 - Iterative methods and preconditioning
- Conclusions

Minimizing communication in iterative solvers

- To minimize communication
 - Generate a set of s vectors \((Ab, A^2b, \ldots, A^sb)\)
 - Orthogonalize the s vectors, check convergence
 - \(O(\log P)\) messages, optimal

However

- Important instability problem to address (monomial basis)
- CA-preconditioners to further decrease the number of iterations

Communication in Krylov subspace methods

Iterative methods to solve \(Ax = b\)

- Find a solution \(x_k\) from \(x_0 + K_k(A, r_0)\), where \(K_k(A, r_0) = \text{span} \{r_0, Ar_0, \ldots, A^{k-1}r_0\}\) such that the Petrov-Galerkin condition \(b - Ax_k \perp L_k\) is satisfied.

- For numerical stability, an orthonormal basis \(\{q_1, q_2, \ldots, q_k\}\) for \(K_k(A, r_0)\) is computed (CG, GMRES, BiCGstab,…)

- Each iteration requires
 - Sparse matrix vector product
 - Dot products for the orthogonalization process

- **S-step Krylov subspace methods**
 - Unroll s iterations, orthogonalize every s steps

Research opportunities and limitations

Length of the basis “s” is limited by

- Size of ghost data
- Loss of precision

Here is a cost table for a 3D regular grid, 7 pt stencil:

<table>
<thead>
<tr>
<th>Method</th>
<th>Memory Cost</th>
<th>Flops Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMRES</td>
<td>(O(s n/P))</td>
<td>(O(s n/P))</td>
</tr>
<tr>
<td>CA-GMRES</td>
<td>(O(s n/P) + O(s^2 (n/P)^{2/3}))</td>
<td>(O(s n/P) + O(s^2 (n/P)^{2/3}))</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preconditioners: few identified so far to work with s-step methods

- Highly decoupled preconditioners: Block Jacobi
- Hierarchical, semiseparable matrices (M. Hoemmen, J. Demmel)

A look at three classes of preconditioners

- Incomplete LU factorizations (joint work with S. Moufawad)
- Two level preconditioners in DDM
- Deflation techniques through preconditioning
ILU0 with nested dissection and ghosting

Let \(a_j \) be the set of equations to be solved by one processor.
For \(j = 1 \) to \(s \) do
Find \(f_j = \text{ReachableVertices} \ (G(U), \ a_j) \)
Find \(\gamma_j = \text{ReachableVertices} \ (G(L), \ f_j) \)
Find \(\delta_j = \text{Adj} \ (G(A), \ \gamma_j) \)
Set \(a_j = \delta_j \)
end

Ghost data required:
\[x(\gamma_j), A(\gamma_j, \ \delta_j), L(\delta_j, \ \gamma_j), U(\delta_j, \ \delta_j) \]

\(\Rightarrow \) Half of the work performed on one processor.

CA-ILU0 with AMML reordering and ghosting

- Reduce volume of ghost data by reordering the vertices using Alternating Min-Max Layers (AMML) reordering:
 - First number the vertices at odd distance from the separators
 - Then number the vertices at even distance from the separators
- CA-ILU0 computes a standard ILU0 factorization

Comparison with Block Jacobi

- Block Jacobi is another preconditioner which does not require communication
- Tests for a boundary value problem (Achdou, Nataf), 40x40x40 grid

\[-\text{div}(\kappa(x)\nabla u) = f \quad \text{in} \Omega \]
\[u = 0 \quad \text{on} \partial D \]
\[\frac{\partial u}{\partial n} = 0 \quad \text{on} \partial N \]
\[\Omega = [0,1]^3, \ \partial D = \partial D^0 \bigcup \partial D^1 \]
\[\kappa \text{ jumps from } 1 \text{ to } 10^3 \]

Methods tested:
- Natural ordering NO+ILU0
- CA-ILU0 - k-way+AMML(1)+ILU0
- Block Jacobi using LU - BJ+ILU0
- Block Jacobi using ILU0 - BJ-ILU0

Challenge in getting scalable preconditioners

Many preconditioners (as ILU) have plateaus in the convergence, often due to the presence of few low eigenvalues

Direction preserving factorization

- Preconditioner \(M \) satisfies a filtering property
 \[MT = AT \quad \text{or} \quad T^T M = T^T A \]
- Filtering vectors \(T \) are chosen to improve the convergence

Block Filtering (BFD) and Nested Filtering (NFF) Preconditioners
R. Fezzani, LG, P. Kumar, R. Lacroix, F. Nataf, L. Qu, K. Wang
- Algebraic preconditioners based on nested dissection and block/nested factorization
- Every Schur complement is approximated to satisfy the filtering property:
 \[L_{ik} D_{ij} U_{kj} t = L_{ik} F_{kj} U_{kj} t, \text{ e.g. } F_{kj} = \text{Diag}(D_{ik} U_{kj} t) (U_{kj} t) \]
Preserving directions of interest

- **Pointwise approximate factorization satisfying a row-sum criteria**, Dupont, Kendall, and Rachford (1968), Gustafsson (1978)
 - Improves the condition number of the preconditioned matrix for matrices arising from finite difference approximation of second order elliptic equations
- **Nested factorization**, Appleyard, Cheshire (1983)
 - If \(t^r \mathbf{r}_0 = 0 \), then at any iteration \(t^r \mathbf{r}_k = 0 \), this ensures a mass conservation property
- **Direction preserving semiseparable approximation of SPD matrices**, Gu, Li, Vassilevski (2010)
 - If the near null-space of the original fine grid matrix is preserved, then view the preconditioner as a coarse discretization matrix
 - Conditioning analysis performed by Napov, components dropped are orthogonal to components preserved
- **Multigrid methods**
 - Bootstrap AMG (Brandt, Brannick, Kahl, and Livshits)

Results for a boundary value problem

- SKY (provided by Achdou, Nataf), discretized on a 400x400x400 grid (64 millions unknowns, 447 millions nonzeros)
- \[-\text{div}(\mathbf{x}(x)\nabla u) = f \text{ in } \Omega\]
- \(u = 0 \text{ on } \partial \Omega_0 \)
- \(\frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega_N \)
- \(\Omega = [0,1]^3, \Omega_N = \partial \Omega \setminus \partial \Omega_0 \)
- Tests use GMRES (PETSc), tolerance = 10^{-8}

Comparison with Restricted Additive Schwarz (RAS)

Settings:
- Curie supercomputer based on Bullx system, nodes composed of two eight-core Intel Sandy Bridge.
- Subdomains solved using Pardiso, separators solved using MUMPS.
- GMRES and RAS from PETSc.

Conclusions

- Introduced a new class of communication avoiding algorithms that minimize communication
 - Attain theoretical lower bounds on communication
 - Minimize communication at the cost of redundant computation
 - Are often faster than conventional algorithms in practice
- Remains a lot to do for sparse linear algebra
 - Communication bounds, communication optimal algorithms
 - Numerical stability of s-step methods
 - Alternatives as block iterative methods, pipelined iterative methods
 - Preconditioners - limited by memory and communication, not flops
- And BEYOND

Best student paper finalist, Qu, LG, Nataf, SC’13
Conclusions

- Many previous results
 - Only several cited, many references given in the papers
 - Flat trees algorithms for QR factorization, called tiled algorithms used in the context of
 - Out of core - Gunter, van de Geijn 2005

Collaborators, funding

Collaborators:
- A. Branescu, INRIA, S. Donfack, INRIA, A. Khabou, INRIA, M. Jacquelin, INRIA, S. Moufawad, INRIA, H. Xiang, University Paris 6
- J. Demmel, UC Berkeley, B. Gropp, UIUC, M. Gu, UC Berkeley, M. Hoemmen, UC Berkeley, J. Langou, CU Denver, V. Kale, UIUC

Funding: ANR Petal and Petalh projects, ANR Midas, Digiteo Xscale NL, COALA INRIA funding

Further information:
http://www-rocq.inria.fr/who/Laura.Grigori/

References

Results presented from:

Parallel TSQR

References: Golub, Plemmons, Sameh 88, Pothen, Raghavan, 89, Da Cunha, Becker, Patterson, 02
LU_PRRP: LU with panel rank revealing pivoting

- Pivots are selected by using strong rank revealing QR on each panel.
- The factorization after one panel elimination is written as

\[PA = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} I_b \\ A_{21}A_{11}^{-1} \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix} \]

\(A_{21}A_{11}^{-1} \) is computed through strong rank revealing QR and
\[\max(|A_{21}A_{11}^{-1}|) \leq \frac{\gamma}{g} \]

- LU_PRRP and CALU_PRRP stable for pathological cases and matrices from two real applications (Volterra integral equation - Foster, a boundary value problem - Wright) on which GEPP fails.

A. Khabou, J. Demmel, LG, M. Gu, 2012

CA-ILU0: numerical experiments

- CA-ILU0 computes a standard ILU0 preconditioner, but with a different ordering.
- Convergence is similar to ILU0 with nested dissection ordering.
 - Results presented for a 3D Matrix issued from a triphasic Black Oil model (elliptic behavior of the pressure block).

<table>
<thead>
<tr>
<th>Ordering</th>
<th>Rel. residual</th>
<th>Error</th>
<th>No of iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>E-8</td>
<td>E-9</td>
<td>55</td>
</tr>
<tr>
<td>ND 16</td>
<td>E-8</td>
<td>E-9</td>
<td>83</td>
</tr>
<tr>
<td>ND 64</td>
<td>E-7</td>
<td>E-9</td>
<td>85</td>
</tr>
<tr>
<td>ND 128</td>
<td>E-8</td>
<td>E-9</td>
<td>86</td>
</tr>
<tr>
<td>ND 256</td>
<td>E-8</td>
<td>E-9</td>
<td>78</td>
</tr>
<tr>
<td>AND 16</td>
<td>E-7</td>
<td>E-9</td>
<td>75</td>
</tr>
<tr>
<td>AND 64</td>
<td>E-8</td>
<td>E-9</td>
<td>82</td>
</tr>
<tr>
<td>AND 128</td>
<td>E-8</td>
<td>E-9</td>
<td>83</td>
</tr>
<tr>
<td>AND 256</td>
<td>E-8</td>
<td>E-9</td>
<td>85</td>
</tr>
</tbody>
</table>

Tournament pivoting for a tall skinny matrix

1) Compute GEPP factorization of each \(W_i \), find permutation \(\Pi_i \)

\[
W = \begin{pmatrix} W_0 \\ W_1 \\ W_2 \\ W_3 \end{pmatrix} = \begin{pmatrix} \Pi_{i0} \Pi_{10} L_{00} U_{00} \\ \Pi_{i1} \Pi_{11} L_{10} U_{10} \\ \Pi_{i2} \Pi_{12} L_{20} U_{20} \\ \Pi_{i3} \Pi_{13} L_{30} U_{30} \end{pmatrix}
\]

Pick b pivot rows, form \(A_{00} \)

Same for \(A_{10} \)

Same for \(A_{20} \)

Same for \(A_{30} \)

2) Perform \(\log_2(P) \) times GEPP factorizations of 2b-by-b rows, find permutations \(\Pi_i, \Pi_j \)

\[
\begin{pmatrix} A_{00} \\ A_{10} \\ A_{20} \end{pmatrix} = \begin{pmatrix} \Pi_{i0} \Pi_{10} L_{00} U_{00} \\ \Pi_{i0} \Pi_{10} L_{10} U_{10} \\ \Pi_{i0} \Pi_{10} L_{20} U_{20} \end{pmatrix}
\]

Pick b pivot rows, form \(A_{01} \)

Same for \(A_{11} \)

\[
\begin{pmatrix} A_{01} \\ A_{11} \end{pmatrix} = \begin{pmatrix} \Pi_{i0} \Pi_{10} L_{01} U_{01} \\ \Pi_{i0} \Pi_{10} L_{11} U_{11} \end{pmatrix}
\]

3) Compute LU factorization with no pivoting of the permuted matrix:

\[
\Pi_i^T \Pi_j^T \Pi_k W = LU
\]

Two level preconditioners

In the unified framework of (Tang et al. 09), let:

\[
P := I - A Q, \quad Q := Z E^{-1} Z^T, \quad E := Z^T A Z
\]

where
- \(M \) is the first level preconditioner (eg based on additive Schwarz)
- \(Z \) is the deflation subspace matrix of full rank
- \(E \) is the coarse grid correction, a small dense invertible matrix
- \(P \) is the deflation matrix

Examples of preconditioners:

\[P_{\text{ADD}} = M^{-1} + Z E^{-1} Z^T, \quad P_{\text{ADEF2}} = P^T M^{-1} + Z E^{-1} Z^T \] (Mandel 1993)

- DDM - \(Z \) and \(Z^T \) are the restriction and prolongation operators based on subdomains, \(E \) is a coarse grid, \(P \) is a subspace correction
- Deflation - \(Z \) contains the vectors to be deflated
- Multigrid - interpretation possible
Two level preconditioners

\[P_{ADD} \] for a Poisson-like problem, using \(Z \) defined as in (Nicolaiides 1987):

\[
Z = \begin{bmatrix}
1_{n_0} & 0 & \ldots & 0 \\
0 & 1_{n_1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1_{n_2}
\end{bmatrix}
\]

\(Z = \begin{bmatrix} Z \end{bmatrix} (A \chi) = \begin{bmatrix} Z \end{bmatrix} E^{-1} \begin{bmatrix} Z \end{bmatrix} ^T (A \chi) \]

Evolution of high performance architectures

- Computers get faster, but their architecture gets more complex
- First petascale system 2008, 1.33 Pflop/s
 - RoadRunner, IBM, LANL
 - A TriBlade formed by
 - Two dual-core Opterons with 16 GB of memory
 - Four PowerXCell 8i CPUs with 16 GB Cell RAM
 - A total of 13,824 Opteron cores + 116,640 Cell cores
 - Fastest supercomputer today, 17.59 Pflop/s
 - Titan, Cray XK7, ORNL, 18,688 compute nodes
 - 16 cores AMD Opteron, 32 GB of RAM memory per node
 - 560,640 processors including 261,632 NVIDIA K20x accelerator cores.

Lower bounds for linear algebra

- Computation modelled as an n-by-n-by-n set of lattice points \((i,j,k)\) represents the operation \(c(i,j) = f(g(a(i,k)*b(k,j))) \)
- The computation is divided in S phases
- Each phase contains exactly M (the fast memory size) load and store instructions
- Determine how many flops the algorithm can compute in each phase, by applying discrete Loomis-Whitney inequality:

\[
w^2 \leq N_A N_B N_C
\]

Lower bounds for matrix multiplication (contd)

- Discrete Loomis-Whitney inequality:

\[
w^2 \leq N_A N_B N_C
\]

- Since there are at most 2M elements of A, B, C in a phase, the bound is:

\[
w \leq 2\sqrt{2} M^{3/2}
\]

- The number of phases \(S \) is \#flops/w, and hence the lower bound on communication is:

\[
\frac{\#flops}{w} = \Omega \left(\frac{\#flops}{M^{1/2}} \right)
\]

\[
\frac{\#loads/stores}{w} = \Omega \left(\frac{\#flops}{M^{1/2}} \right)
\]